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Abstract. The thermoelastic behaviour of polyvinylacetate monolayers spread on an aqueous subphase has
been studied using rheological data previously published (Monroy et al., Phys. Rev. E 58, 7629 (1998)).
The results show fluid-like viscoelastic behaviour well above a transition temperature Tm, while at lower
temperatures a soft solid-like behaviour emerges. The correlation between thermodynamic and elastic
properties below Tm can be described in terms of scaling laws.

PACS. 68.10.-m Fluid surfaces and fluid-fluid interfaces – 68.10.Et Interface elasticity, viscosity, and
viscoelasticity – 68.60.-p Physical properties of thin films, nonelectronic – 82.65.Dp. Thermodynamics of
surfaces and interfaces

1 Introduction

Monomolecular films of small surfactants located at the
air-water interface are known to form various solid phases,
which have been extensively characterised by different
diffraction techniques, particularly grazing incident X-ray
from synchrotron sources [1] or neutron diffraction [2]. On
the other hand, these quasi-bidimensional systems melt at
low surface density and high enough temperature, appear-
ing different fluid phases. In contrast, the low-temperature
phases found for monolayers of insoluble polymers do not
show, in most cases, crystalline order. In fact, in 3D it is
well-known that polymeric systems only form well-defined
solid states for some specific tacticities [3]. The presence of
chain defects in atactic polymers or polymers with lateral
branches, makes it impossible for the polymers to crys-
tallize on cooling, forming amorphous glasses or at most
semicrystalline solids. It is commonly accepted that the
two generic types of polymeric solids, namely crystalline
and glassy polymers, give rise to different elastic states,
energy-driven and entropy-driven (rubber-like elasticity),
respectively. In the first case, at small strains the displace-
ment of the elastic elements causes a variation in internal
energy around the energetic minimum, which corresponds
to the equilibrium arrangement in the crystalline lattice,
while the entropy remains approximately constant. How-
ever, a rubber decreases its internal entropy on elonga-
tion, reason for which it recovers its equilibrium dimen-
sion if the applied stress ceases. Crystalline order has been
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however found by Schouten et al. [4] in monolayers of
PMMA on water if the polymer have a certain degree of
tacticity, while the glassy state is the only kinetically ac-
cessible phase for the atactic form, as in the 3D system.
Furthermore, because of the increase in chain mobility in
the monolayer, the loss of a degree of freedom will de-
crease Tg with regards to the 3D value [5,6]. Therefore,
polymer concentrated solutions in 2D are excellent candi-
dates to check for fluid-solid transitions in 2D, because,
though being basically liquids, normally they behave like
highly non-Newtonian viscoelastic fluids, and also under
certain circumstances, they seem to behave like a purely
elastic solid.

The rheological criterion for distinguishing between a
solid and a fluid is that the first exhibits resistance to shear
deformation because of the bonding between defects in the
solid lattice. In the liquid state at a high enough temper-
ature, it is favourable for the bounded pairs of defects to
dissociate because of the resulting gain in entropy. At this
point free dislocations appear and the system will respond
to a shear stress with no resistance, the mechanism being
the continuous creation of dislocation pairs, and pulling
them apart to infinity. In these conditions shearing does
not store energy in elastic form, only dissipation is present,
and we have viscous shear flow [7].

On the other hand, it is well-understood that the
character of ordering present in a system depends on
its spatial dimensionality [8]. Indeed, it is also generally
accepted that because of fluctuations, solids in one or
two dimensions lack true long-range order, therefore the
melting phenomena is not an expected feature in these
systems [8,9]. However, and based in a new definition of
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order, so-called “topological order”, a theoretical frame for
2D-freezing has been developed by Kosterlitz–Thouless–
Halperin–Nelson–Young [10,11]. In the KTHNY theory,
the loss of the long-range topological order, renders a
melting behaviour essentially different to the tridimen-
sional case. Two-dimensional solids melt via sequential
continuous phase transition through a hexatic interme-
diate phase with short-range positional order and quasi-
long range bond orientational order. It is also commonly
accepted that KTHNY theory of 2D-melting is not based
on any particular choice of intermolecular interactions; it
remains valid for any system, which can be characterised
as a deformable elastic medium [12].

Fluid polymer monolayers [13] can be considered
as complex quasi-bidimensional systems, with negligible
thickness h, compared with planar dimensions. Hence they
behave as very stiff membranes characterised by a set of
2D viscoelastic parameters several orders of magnitude
larger than the analogue ones for the bulk system. Partic-
ularly, previous studies have demonstrated that polyviny-
lacetate (PVAc) spread at the air-water interface is able
to form very stable monolayers [14–16]. The PVAc at-
actic chains present extended configurations because of
the good-solvent character of the air-water interface for
this polymer, which produces a thermodynamic behaviour
characterised by very expanded isotherms [14–17]. In a
previous paper [18], we have carried out a rheological
study of these monolayers in a broad frequency range
(> 10 decades) and between 0 and 25 ◦C. To this
end, quasi-elastic surface light scattering (QESLS), ex-
cited electrocapillary waves (ECW) and mechanical step-
compression experiments were performed.

We have pointed out the strong correlation between
the static thermoelastic properties and the dynamic ones,
evidencing a high elastic efficiency, which is better at lower
temperatures. In addition, a singular behaviour was de-
tected at a temperature around 14 ◦C, which might be
compatible with a transition from a fluid to a soft-solid
state. All these issues make this system interesting for
checking fluid-solid transitional behaviour in 2D polymeric
matter. The results concerning the surface rheology of the
PVAc monolayers have been previously described in ref-
erence [18]. However, the results were only described from
a phenomenological point of view, i.e., no microscopic ap-
proach was proposed to explain the observed macroscopic
behaviour, unless a chain reptation model was tentatively
proposed to explain the complex dynamics found in the
low frequency domain. From these data and at surface
concentration high enough, the monolayer seems to be-
have as a quasi-2D polymer gel, made of a network of
polymer chains in a near-linear conformation.

The main aim of this work is hence twofold: First, to
show clear signatures for the existence of transition from
a fluid to a soft-solid state (like a 2D rubber) in the PVAc
monolayers as the temperature is decreased. Second, to
point out the existence of singular thermoelastic behaviour
compatible with bidimensional solidification processes.

The rest of this paper will be organised as follows:
Section 2 briefly summarizes the essential concepts of

surface hydrodynamics related to our experimental re-
sults. Section 3 contains the thermoelastic information de-
rived from the experimental results, and scaling behaviour
found for some of the elastic parameters. Finally, Section 4
summarizes the main conclusions.

2 Theoretical background

It is well-known that because of the coupling between
transversal and longitudinal motions at the air-water in-
terface, surface hydrodynamics is relevant to the thermoe-
lastic behaviour of polymer films [19]. The transversal or
capillary motion is essentially a shear motion, governed
by surface tension γ and gravity g, while the longitudinal
motion must be decomposed in both, a pure compression
mode and a shear mode, characterised by the two differ-
ent elastic moduli (λ and µ, respectively). Since dissipative
effects do exist within the film, each one of these uniax-
ial moduli must be linearly developed as a viscoelastic
response function with imaginary part proportional to a
viscosity coefficient. The bulk modulus ε̃, defined in equa-
tion (1), contains both shear µ and compression λ, and it is
commonly named dilational modulus. This total longitudi-
nal modulus contains a real part or dilational elasticity ε,
and a dissipative term or dilational viscosity κ(= ηµ+ηλ).

ε̃(T ) = µ(T ) + λ(T ) = ε+ iωκ. (1)

Although in general the shear contribution to dilational
viscosity ηµ, presents non-zero values, it is several orders
of magnitude smaller than the compression component
ηλ [20,21].

Recently, Buzza et al. [22] and earlier Seppecher [23],
from rigorous thermodynamic equalities for the viscoelas-
tic free energy functional, have theoretically demonstrated
that the transversal dissipation coefficient must be zero in
order to obtain a quadratic form for the surface dissipa-
tive function, and consequently a minimal dissipation at
null deformation [7,22]. In spite that this treatment incor-
porates new elastic constants related to the spontaneous
curvature and its coupling with surface dilatation, they be-
come negligible compared to λ when the interfacial thick-
ness h is small enough as compared with the wavevector,
q (i.e. qh � 1). Consequently, the usual hydrodynamic
model (see Ref. [19]) with a real and a ω–independent
transversal response function equal to the equilibrium sur-
face tension, γ = γ0 [22], will be valid in the linear vis-
coelastic regime and for the particular system studied
here (qh ≤ 10−4).

In order to set the meaning of some of the vari-
ables used below, it is convenient to briefly review the
background associated to the capillary wave experiments.
When the hydrodynamic Navier-Stokes equation for os-
cillatory motion is resolved within the appropriate inter-
facial boundary conditions, one finds capillary and dila-
tional modes coupled together [19,22,24]. The dispersion
equation D(ω), for this coupled motion finally can be
written as:

D(ω) = LT + [ωη(q −m)]2 = 0 (2)
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where:

L = ε̃q2 + iωη(q +m) (3)

T = γq2 + iωη(q +m)− ρ

q
ω2 + ρg (4)

m is known as capillary penetration depth in the subphase
and is given by:

m2 = q2 + iω
ρ

η
with Re(m) > 0. (5)

Solving the dispersion equation for γ = γ0 and for the
propagation characteristics of the surface modes ω, q, one
can obtain the dilational parameters ε̃ = ε+ iωκ [18].

3 Results and discussion

3.1 Equilibrium thermoelasticity

The thermodynamic equilibrium properties of the PVAc
monolayers spread at the air-water interface have been
extensively discussed in detail in a previous work [18]. We
will reanalyse here some of the thermoelastic information
that will be used later in discussing the solidification-like
behaviour.

3.1.1 Concentration regimes and lattice dimension a0

From the experimental surface pressure-surface concen-
tration (Π−Γ ) isotherms we did calculate the critical ex-
ponent of the radius of gyration ν for PVAc, and found
that it remains constant within the experimental uncer-
tainty at 0.78±0.03 over the whole temperature range [16].
This value is in excellent agreement with the prediction
of the Renormalization Group theory for polymers in a
bidimensional good solvent [25]. We were also able to cal-
culate the chain overlap concentration Γ ∗, which marks
the crossover from dilute to semidilute regimes [25]. At
this particular concentration the chains begin to overlap
and the lateral contact between two independent chains is
established. Therefore, one can consider this arrangement
as the more compact 2D distribution compatible with the
monomer size. Consequently, the area per monomer at
Γ ∗(A∗ = 1/Γ ∗) can be taken as an estimation of the di-
mensions of a square lattice a2

0 ≈ A∗. Figure 1 shows that
A∗ increases strongly with T , reflecting the tendency of
the monolayers to be more expanded at high tempera-
ture. Another possible estimation of a0 can be obtained
from the so-called limit area of the isotherm Alim, or sur-
face area of the semidilute regime extrapolated at Π = 0.
In general, these values are smaller than A∗, but as it can
be seen in Figure 1, both exhibit the same tendency on in-
creasing T . In these data one observes a clear kink around
14−15 ◦C which suggests a change in the specific area on
cooling the monolayers. This feature will be discussed later
in detail.

In order to obtain a good estimation of a0, continu-
ous compression-expansion cycles in the dilute-semidilute
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Fig. 1. Temperature dependence of the area per monomer at
Γ ∗(= 1/A∗) (�). For comparison, the cell dimension A0 ob-
tained from the Singer’s equation of state (◦) is also repre-
sented. (�) Corresponds to the limit area Alim of the isotherms
of the PVAc monolayers.

regime (Π < 2 mN/m) were performed in a Lang-
muir trough at low enough velocity of the barriers
(< 1 mm/min) [14]. No hysteresis processes were de-
tected in these closed cycles. These low Π portions of the
isotherms were fitted to the Singer’s equation of state (2D
version of the configurational lattice model of Flory) cor-
rected with a Van der Waals energetic contribution [26].
This equation is able to describe successfully the diluted
portion of the experimental isotherms and from the fits
one can obtain a series of microscopic parameters. Partic-
ularly the cell dimensions a0, and the coordination index
z of a polymer site in the lattice has been calculated as a
function of temperature. The data in Figure 1 show the
excellent agreement of the cell parameter a0 =

√
A0 calcu-

lated from these fits to the equation of state and the area
per monomer at Γ ∗ obtained from the scale analysis in the
dilute-semidilute region (see Refs. [14,18] for details). The
calculated values for z increase monotonically from a value
close to 2 at low temperature to reach an asymptotic limit
close to 3.5 at room temperature. In fact, the only admis-
sible values for this parameter are comprised in the range
between z = 2, value for a fully-extended chain, and z = 4
which corresponds to a random coil [33]. The variation ob-
served seems to suggest an internal disorganisation of the
chains in increasing temperature from a close to linear to
a random-like conformation. This seems to be compatible
with the more expanded character of the isotherms (see
Ref. [14]), since a random coil excludes more volume than
the linear chain of equal molecular weight.

3.1.2 Thermoelastic properties. Thermal expansivity α
and compression ε0 moduli

It is known that depending on its microscopic configu-
ration, a polymer in 3D may either crystallize or cool
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Fig. 2. Thermal expansion coefficient α as a function of T at
different surface pressures Π. The arrow marks the hypothet-
ical fluid-solid transition.

down to its glassy amorphous state, but in both cases the
thermal expansion coefficient α = (1/V )(∂V/∂T )P , varies
strongly in crossing the transition temperature [3]. The
2D homologue of this quantity can be calculated from the
following expression:

α =
1
A

(
∂A

∂T

)
Π

· (6)

We have calculated α as a function of T from the Π−A
experimental isotherms [14]. Figure 2 shows that in the
low Π regime (Π > 0.5 mN/m, dilute-semidilute regime)
there is a change in the thermal expansivity around
14−15 ◦C. It is worth noting also the thermal inversion of
α in crossing to the concentrated regime at Π ≈ 12 mN/m
(and Γ ≥ 1 mg/m2). Negative values of the thermal ex-
pansivity are not a surprising result, in fact there are nu-
merous elastic materials that show contraction upon heat-
ing [27]. Negative thermal expansion coefficients have been
found by X-ray measurements of the lattice parameters
of crystalline and semicrystalline polymers in 3D [27–29].
For example, α < 0 is found for cases in which uniax-
ial orientation is high enough, such as that one found in
amorphous extended polymers around or below Tg [27].
As it has been pointed out by several authors [27,29,30],
the thermal expansivity of a fully extended chain should
be negative because thermal vibrations lead to a shorten-
ing of the chain. However, it is important to remark that
because of the atacticity of the PVAc, the solid phase spec-
ulated here might be more compatible with an amorphous
glass than with a crystalline phase, which should be not
expected in this system. Similar liquid-solid transition be-
haviour can be observed by compressing the monolayer at
constant temperature, and in fact a similar inversion in α
is observed in increasing Π (or Γ ). This point has been
experimentally corroborated by Armstrong et al. [31] in
colloidal monolayers, and used by Earnshaw et al. [32] to
argue the success of KTHNY theory in insoluble mono-
layers made of small surfactants.

Fig. 3. Static elasticity modulus calculated from the Π−Γ ex-
perimental curves. The dashed lines indicate the limits between
the concentration regimes.

Also, from the experimental Π−Γ curves of refer-
ence [18], it is possible to calculate the more habit-
ual static elasticity modulus λ0 (or ε0 in more familiar
notation), which accounts only for hydrostatic compres-
sion:

ε0 = λ0 = −A
(
∂Π

∂A

)
T

= Γ

(
∂Π

∂Γ

)
T

· (7)

Figure 3 shows ε0 at different temperatures. It can be
observed that most of the increase in the elasticity takes
place within the semidiluted regime, where its variation
with temperature is almost within the experimental un-
certainty. However, near the maximum of elasticity, cor-
responding to the crossover to a concentrated regime
(Γ ∗∗ ≈ 1 mg/m2, Π ≤ 12 mN/m), the temperature coef-
ficient of ε0 becomes negative and non-negligible.

Since ε0 accounts only for static compression, the data
presented in Figure 3 allow one to test for liquid-solid tran-
sitional scaling-like behaviour at T ≤ Tm in a similar way
to the one exhibited by solid monolayers made of small
surfactants [32]:

ε0 = λ0 = λTm + Cλt
Ψ . (8)

Figure 4a shows the T -dependence of ε0 for Γ = Γ ∗∗ for
the PVAc monolayers. Below Tm ∼ 15 ◦C, a strong in-
crease of ε0 is observed. The fit to the scaling law in equa-
tion (8) with Ψ = 0.37 follows quite good the experimental
data for T < Tm using Tm = 14.9± 0.4 ◦C, λ0(T = Tm) =
λ0 = 23.2±0.6 mN/m and Cλ = 7.2±0.9 mN/m. It must
be remarked that the KTHNY theory leads to equation (8)
with Ψ = 0.37. However, it is worth noting that the ex-
perimental data around Tm show a smoother trend that
expected for pure hexatic-fluid transitional behaviour.

We have also tried to fit the data with Ψ variable and
Tm fixed, since there is a strong correlation between both
parameters. Table 1 collects these parameters for several
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Fig. 4. (a) T -dependence of ε0 at Γ = Γ ∗∗ and verification of
scaling behaviour at T ≤ Tm: (—) Ψ = 0.52 and (- - -) Ψ = 0.37
(see parameters in Tab. 1). (b) Experimental verification of the
Struik’s relationship between the temperature coefficient of the
2D static elasticity modulus ε0 and the thermal expansivity α
(see Eq. (9)) at Γ = Γ ∗∗.

Table 1. Fitted values of the parameters in equation (8) at
different fixed values of Tm.

Tm ( ◦C) Cλ (mN/m) Ψ λTm (mN/m)

15.0 6.1± 1.3 0.52± 0.15 24.5 ± 1.5

14.9 6.4± 1.7 0.47± 0.20 24.1 ± 2.0

14.8 6.8± 1.8 0.41± 0.18 23.6 ± 2.0

14.5 7.2± 1.2 0.37± 0.15 23.2 ± 1.4

values of Tm. Because of the experimental uncertainty,
it is evident that these fits do not allow clearly eluci-
date between Ψ = 0.5 and Ψ = 0.37. A tendency toward
Ψ = 0.37 is detected also in decreasing weakly Tm in the
fits. As it can be seen in Figure 4a, the validity range for
simple scaling is remarkably large: the data follow the scal-
ing predictions within the experimental error at the low-
est T , (Tm−T ∼ 15 ◦C). This might be interpreted as a
strong influence of the critical fluctuations onto the elastic
properties of the solid network, even at temperatures far
from Tm.

From the point of view of the equilibrium elasticity [7],
the static elasticity modulus does not include any dissipa-
tion. Consequently, the decrease of ε0 of the solid as T
increases reflects the direct influence of the thermal ex-

pansion in elastic behaviour. In fact, positive values of α
correspond to expanded polymer chains and more as T
increases, consequently the energy-driven contribution to
the elasticity will vanish at high enough temperature [27].
Furthermore, Struik [27] has found the following empir-
ical relation between the thermal expansivity and the
temperature coefficient of the elasticity modulus:

− 1
E

(
dE
dT

)
≈ kα (9)

where k ≈ 10.5 for a variety of 3D polymeric amorphous
systems. By using the calculated values of α and the tem-
perature coefficient of ε0 at the Γ ∗∗ state (close to the
maximum of elasticity), calculated by numerical deriva-
tion of the data in Figure 6a, we have verified the valid-
ity of this relationship in the quasi-2D system considered
here. Figure 4b shows the calculated values of the propor-
tional constant k in equation (9). The agreement with the
expected value is quite good at T ≥ Tm (≈ 14−15 ◦C),
while at T below the melting temperature an increasing
negative difference is clearly observed. These data cor-
relate well with the picture of a rubber-like elastic film
at high T , which deviates toward a different solid state
at T ≤ Tm.

3.1.3 Nature of the solid phase. Enthalpic and entropic
content

From the experimental isotherms, entropy ∆s and en-
thalpy ∆h excesses with respect to the bare surface of
the liquid subphase can be calculated. It has been found
that both ∆s and ∆h decrease monotonically with T in
all surface states. Particularly, states with ∆s < 0 over
the whole T range are found at Γ ≥ Γ ∗∗ (≈ 1 mg/m2),
which indicates the higher degree of order of the mono-
layers formed in the concentrated regime compared to
the free surface of the aqueous subphase. The formation
process of these concentrated surface states is exothermic
in nature (∆h < 0), pointing out their high thermody-
namic stability. The ratio between the entropic fS and en-
ergetic fE contributions to the total elastic force f , under
constant area conditions is given by [3]:

fS

fE
=

T

ε0

(
∂ε0

∂T

)
A

1− T

ε0

(
∂ε0

∂T

)
A

· (10)

This ratio must correlate with the ratio between the en-
ergetic and entropic contributions to the total free energy
of the monolayer:

fS

fE
∼ ∆s

∆h+ T∆s
· (11)

The quantity in equation (10) has been calculated in the
reference state Γ = Γ ∗∗ and it has been compared with
the energetic-to-entropic ratio expressed in equation (11).
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Fig. 5. Relative contribution of the energetic fE and entropic
fS terms to the total elasticity, (�) calculated from the exact
formula in equation (10), and (◦) from the ratio between the
variation of entropy and free energy in the monolayer formation
process (see Eq. (11)).

Figure 5 shows the correlation between the elastic and
thermodynamic calculation. In fact, a minimum appears
at the same temperature, around 13 ◦C, which could be as-
sociated to the effectiveness of the entropic contribution,
at temperatures just below Tm, to promote the solid-fluid
transition. Since |fS/fE| < 1, the dominance of the ener-
getic contributions can be inferred. Moreover, the negative
values of this ratio is an indirect signature of the near-to-
fully-extended configuration of the polymer chains as it
has been earlier emphasised. Particularly, the statistical
micromechanical theory of rubber elasticity developed by
Flory and Rehner [33], predicts a direct relationship be-
tween the energetic contribution fE and the end-to-end
distance as follows:

fE ∼ T
d ln〈r2〉0

dT
· (12)

In fact, in discussing the α data (see Fig. 2), we have
already mentioned that only a nearly fully-extended con-
figuration allows contraction in heating the system. Only
in this particular case, negative values of fE have been
described. This point has been extensively corroborated
in polymers in 3D. More precisely, by using mechanical
dilatometry, Mark [3] has obtained negative values in lin-
ear polyethylene. Therefore, the observed thermoelasticity
is compatible with a energy-driven mechanism, as a conse-
quence of the extended configuration of the PVAc chains
at the air-water interface.

3.2 Surface viscoelasticity

Mechanical step-compression experiments (MSC) on
PVAc monolayers have been carried out at different tem-
peratures near the Γ = Γ ∗∗ surface state. As it has been
shown in a previous study [18], this system exhibits a
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Fig. 6. Low-ω relaxation times obtained from step-
compression experiments. The entire number j reads to a rep-
tation normal mode in the Noskov’s theory; τ at j = 1 is the
director relaxation time of this reptation dynamics. The con-
tinuous line in the slowest data (j = 1) represents the fit to
the WLF equation.

complex viscoelastic relaxation over several decades in
frequency. The experimental relaxation spectra H(ln τ)
are a discrete sequence of broadened Gaussians (Maxwell
modes) with a series of characteristic relaxation times in
good agreement with the normal modes structure pre-
dicted by a 2D reptation model recently proposed by
Noskov [34]. At higher frequencies, by combining electro-
capillary excited waves (ECW) (20 Hz–3 kHz) and SQSLS
(10 kHz–200 kHz) techniques, it has been shown that a se-
ries of independent diffusion modes do exist (see Ref. [18]
for a more detailed description). In order to explain briefly
the reasons to conjecture transitional behaviour from the
low ω data, Figure 6 shows the reptation relaxation times
as a function of T , where it is easy to observe a clear
discontinuity in the slowest relaxation time.

As it has already been demonstrated in reference [18],
the T -dependence of these low frequency data follows
the WLF equation, and the discontinuous jump in the
director time of the reptation dynamics τ1 is predicted
at T = Tm = 14 ± 1 ◦C. Keddie et al. [5] have found
that the Tg of thin films of PMMA and PS deposited
on solid substrates is smaller than for bulk samples. The
bulk Tg of our PVAc sample is 44 ◦C, thus the transition
found at Tm = 14 ◦C might be associated to the Tg of
the quasi-2D system considered here. Moreover, the ob-
served discontinuity at low ω progressively vanishes as
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Fig. 7. T -dependence of the static limit of the dilational vis-
cosity κ. Above Tm Arrhenius-like behaviour (—) with activa-
tion energy Ea ∼ 62 kJ/mol is found. Below Tm a divergent
power-like behaviour is found (- - -).

the motion become faster, suggesting the no existence of
transitional fluctuations at high ω. In fact, the light scat-
tering data (∼ 25 kHz) at the same surface concentration
confirm the total disappearance of the WLF T -dependence
of the relaxation time for the high ω motion, which,
in contrast, becomes Arrhenius-like with high activation
energy (Ea ∼ 87 kJ/mol) [18].

3.2.1 Dilational viscosity

Here, we are only interested in asymptotic viscoelastic be-
haviour, as free as possible of relaxation effects, therefore,
only the zero-frequency limit of the low ω data will be
discussed in detail. Figure 7 shows the T -dependence of
the static limit of the dilational viscosity κ(ω → 0) cal-
culated from the data in reference [18]. A divergence is
observed in κ(ω → 0) around Tm ∼ 14 ◦C. Below Tm, a
strong increase with T is detected in approaching the tran-
sition point. The experimental points have been fitted to
an empirical power law ∼ t−β with t = (Tm − T )/Tm.
Fixing Tm = 14.0 ◦C, one obtains a good quality fit with
β = 0.37 ± 0.05 as in the previous section (see Fig. 4).
Above the transition, a smoother decrease of κ on increas-
ing T is observed. This variation follows the Arrhenius
law, as expected for the molten state. The calculated value
for the activation energy Ea = 62 ± 8 kJ/mol is slightly
lower than the high-ω value (Ea = 87 kJ/mol) obtained
from the light scattering data [18]. This means that the
energetic cost of pulling apart two contiguous frictioning
elements in the monolayer is lower for the slowest mo-
tion, evidencing synergism in the long-range interactions,
responsible for the collective character of the reptation
molecular motions. This is compatible with the spectrum
shown in Figure 8. As it can be observed, the area sub-
tended by the different relaxation process increases with

Fig. 8. Frequency dependence of the dilational loss modulus
ωκ of a PVAc monolayer of Γ = Γ ∗∗ at 25 ◦C. The results have
been obtained by combination of mechanical step-compression
(MSC) experiments, electrocapillary waves (ECW) and surface
light scattering (QESLS).

log ω which indicates that the total viscous dissipation
grows exponentially at high ω.

3.2.2 Dilational and shear elasticity

In order to check for solid-like elastic behaviour, it would
be necessary to obtain simultaneously the two dilational
elastic moduli, compression λ and shear µ. The problem
is that the bulk modulus ε̃(ω) involved in the disper-
sion equation contains these two moduli coupled together.
However, and since the static elasticity modulus λ0 = ε0

only contains hydrostatic compression, it would be possi-
ble to discriminate the partial contribution of the shear
component to the total dilational modulus if the further
increase in λ(ω) due to internal viscoelastic relaxation was
considered. For insoluble monolayers, the excess in the di-
lational modulus at high frequency ε̃(ω) with respect to
the static value ε0, is due to two simultaneous and inde-
pendent factors: relaxation and shear effects. Frequently,
shearing effects are not considered because of the fluid
character of the more usual monolayers, but for a solid
monolayer they should be taken into account. Therefore,
and assuming a Maxwell-like relaxation [35], the expected
ω-functionality of the dilational modulus is given by:

ε̃(ω) = µ+ λ0 +Σkλk
ω2τ2

k

1 + ω2τ2
k

(13)

where λk accounts for the amplitude of the different re-
laxation process that could exist, which, if the strain is
small enough and the system is in the linear viscoelastic
regime, should only produce adsorption or desorption of a
small fraction β = δΓ ′/δΓeq � 1, of the total amount of
monomers involved in a static compression, δΓeq.
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Fig. 9. High frequency total dilational viscoelastic parameters
ε̃(ω) (shear plus compression) of PVAc monolayers at different
temperatures: (a) elastic or store modulus ε(ω) and (b) total
dilational viscosity κ(ω).

In the case of a small uniaxial dilation θλ = δΓeq/Γeq,
a total stress relaxation is therefore observed, δΠ(ω) =
δΠeq(δΓeq) + δΠ ′ = ε(ω)θλ. In the linear regime, which
is the case of hydrodynamic motion induced by surface
modes or the small deformations involved in the MSC ex-
periments, one has δΠ ′ ≈ (∂Π/∂Γ )δΓ ′ = λ0(δΓ ′/Γeq),
and ε(ω) ≈ λ0(1 + β). Therefore, it does not seem
too plausible that the additional relaxations increase the
elastic modulus more than the static elasticity itself.
Consequently, and following the above argument, there
will be a maximum limit for the relaxation component
to the compression modulus:

Σkλk = βλ0 ≤ λ0 (14)

from which the range for the shear component can be
written as:

µ+ = ε̃(ω)− 2λ0 ≥ µ ≥ µ− = ε̃(ω)− λ0. (15)

Therefore, at least an estimation of the shear modulus can
be given if one knows the dilational modulus at frequencies
high enough. Figure 9 shows the results for dilational vis-
coelastic modulus at high frequency (∼ 25 kHz QESLS) at
some of the measured temperatures. In order to compare
surface states with equivalent energy-driven elasticity, the
Π = constant thermodynamic path has been chosen. At
low Π(≤ 2 mN/m), ε̃(ω) is small and remains constant
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Fig. 10. (a) T -dependence of the elasticity modulus at Π =
12 mN/m ∼ Γ ∗∗, (�) total elasticity ε(ω) = λ + µ at
q = 229.6 cm−1, and (◦) static compression modulus λ0. (b)
Estimated upper (µ+) and lower (µ−) limits for the shear com-
ponent of the elastic modulus (see Eq. (15)).

with Π over the whole temperature range. In a similar
way to the static modulus, ε̃(ω) grows suddenly in the
semidiluted regime until it reaches a maximum value at
Π = Π∗∗ ∼ 12 mN/m [Γ (Π∗∗) ∼ Γ ∗∗ ∼ 1 mg/m2],
which is always higher than the static value at the same
Π. However, it is worth noting that while at high T this
difference is small, at temperature low enough, the maxi-
mum elasticity value increases strongly with regard to the
static value. At T = 1.35 ◦C one has ε0 = 27.0 mN/m and
ε̃(ω) = 83.70 mN/m, i.e., between 30 and 57 mN/m of this
total amount (36–68%) corresponds to the shear compo-
nent. The experimental values of the dilational viscosity
κ, shown in Figure 9b, vary with Π (or Γ ) in a similar way
than ε̃(ω). Its T -dependence is less clear, remaining almost
constant within the experimental error. Figure 10 shows
both, the high-ω elasticity modulus and the static value
at Π = 12 mN/m. The range of variation of µ, calculated
from equation (15) have been also included. Since neg-
ative values for µ− are physically meaningless they have
been made equal to zero. The kink in the slope of the ε̃(ω)
data in Figure 10a is less clear than for the static ones λ0,
(see Fig. 4a, also) on one side due to its greater absolute
variation and, on the other side because of an eventual
q-induced Tm-drift to higher temperatures. However, the
concavity of ε̃(ω) at T ≤ Tm (static conditions ∼ 15 ◦C),
does not seem compatible with a scaling behaviour with
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Fig. 11. Scaling behaviour in the total elasticity coefficient
ε̃(ω) (◦) in a melting by compression process. Comparison with
the static compression modulus λ0 (�). The continuous line
represents the fit to the scaling law in equation (16) with the
exponent Ψ = 0.37.

a critical exponent Ψ lower than unity. Figure 10b shows a
clear tendency to fluid-like behaviour (µ→ 0) at tempera-
tures high enough. Clearly, the data at the lowest temper-
atures are compatible with a certain minimum amount of
shear component, which confirms that these states behave
like a 2D solid.

A similar behaviour should be found in a solidification
process carried out by an isothermal compression path. As
it has been discussed in Section 3.1.3, the PVAc monolay-
ers seem to behave according to an energy-driven elastic
mechanism, consequently the compression path must be
a more evident via for surface freezing than the thermal
cooling (entropic in nature). In practice, T must be re-
placed by Π, and if the film undergoes a melting process
under expansion, the elastic modulus ε̃(ω) should strongly
decrease at Π = Πm. The success of equation (8) lead
us to consider that the elastic coefficient might follow a
scaling law in the reduce pressure, ΠR = (Π −Πm)/Πm:

ε ∼ ΠΨ
R (16)

with Ψ = 0.37−0.5.
This correspondence has been earlier recognized by

Earnshaw et al. [32] in small surfactants monolayers,
which can exhibit true hexatic mesophases at monomeric
specific area and temperature low enough, and where the
KTHNY theory might hence apply successfully [32]. Also
we think that since Π, instead of A, is the generalised
force associated to the 2D mechanical work, it would be
the rigorous mechanical equivalent of T for the isothermal
compression path.

Figure 11 shows the low Π portion of the ε−Π curve
at T = 1.35 ◦C. Similar results have been found at the
rest of temperatures studied at T < Tm. In this figure it is
easy to see the abrupt change in the elasticity coefficient
at Π = Πm. At lower pressures (Π ≤ Πm ∼ 1.24 mN/m,

in the diluted regime), the total elasticity ε̃(ω) values are
close to the compression ones, λ0 = ε0, and close to zero
as corresponds to a fluid phase. At Π = Πm ∼ Π∗,
the total bulk modulus ε̃(ω) = λ(ω) + µ(ω) grows sud-
denly while the static compressibility λ0 remains in a low
value (µ � λ ∼ 0). This is compatible with the idea
of a more organized phase at lower temperature, with
the polymer chains in a near fully-extended configura-
tion. Under such conditions it would be rather difficult
to deform the monolayer by compression (λ ∼ 0). This
transitional behaviour at the crossover to the semidiluted
regime (Π ≥ Πm ∼ Π∗) is compatible with the scaling law
in equation (16) with critical exponent Ψ = 0.37± 0.13 in
the proposed melting by expansion process, corroborating
hence the existence of a solid shearing phase at Π ≥ Πm

and T ≥ Tm.

4 Conclusions

The thermoelastic behaviour of PVAc monolayers has
been reanalysed from the rheological data already pub-
lished in a earlier paper, pointing out the existence of tran-
sitional behaviour around Tm ∼ 14 ◦C. Above this temper-
ature a viscoelastic fluid phase exists like a 2D-gel. Below
Tm, a solid-like behaviour emerges, conjecturing about a
glass network made of crosslinked extended chains. In par-
ticular, scaling-like behaviour has been found in the vis-
coelastic coefficients of the solid phase at temperatures
below Tm. Singular behaviour of the bulk modulus has
been also evidenced in a freezing by compression process; a
strong increase of the elastic modulus is observed in cross-
ing from the fluid state to the solid, which points out that a
shear contribution µ 6= 0 emerges over the total bulk mod-
ulus ε̃ = λ+µ, as expected for a 2D-solid. Finally, from the
global thermoelastic equilibrium behaviour of the PVAc
monolayers, the dominance of energetic effects in the elas-
tic response has been inferred, in contrast with the more
usual entropic mechanism responsible for rubber elasticity
in amorphous materials. An extended-like configurational
image, compatible with the experimental Π−A isotherms,
has been tentatively conjectured for the PVAc chains at
the air-water interface. This can explain the observed ther-
moelastic behaviour, particularly the thermal contraction
(α < 0) found in the solid state, opening the possibility
for solid-like behaviour; a network of defects, with a fair
degree of long-range order, in a matrix made of crosslinked
full extended chains could be formed at low temperature
and high surface density.
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Nucléaire (CEPHYTEN France) for financial support under
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